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In the absence of an apparent (single) molecular template,
the irreversible self-assembly of benzyl alcohol substituted,
deep-cavity cavitands is shown to be a highly efficient
process.

With aspirations to improve our understanding of self-assem-
bly, chemists have begun to focus on systems where the
convergence of the molecular subunits is not promoted by a
single molecular template,1–4 but rather where assembly occurs
around multiple ‘templates’.5 When considering the nano-scale
products which such manifold species ‘templations’ result in,
two options are available. First, scientists have considered self-
correcting systems as a means to product formation, an
approach that utilizes thermodynamics to maximize the yield of
the target.6,7 Alternatively, using a (normally less efficient)
irreversible process allows the potential isolation of inter-
mediates, and hence a more detailed picture of the assembly
process in question. In this latter paradigm, considerable work
has been carried out in systems requiring a single template.
Thus, extending the original work of Cram,8–10 Sherman et al.
have demonstrated how carceplex formation is governed by the
topology of the molecular template so essential for their
synthesis.11 In contrast, probing irreversible self-assemblies
that require manifold species ‘templation’ has been relatively
unexplored, primarily because of a lack of suitable supramo-
lecular motifs12 that can effectively drive such assemblies. Thus
in the formation of a number of large, cavity-containing
molecules, it has been noted that when using phenol groups to
form the supramolecular motif, yields have tended to decrease
toward statistical or worse.10,13,14 We report here on an
irreversible assembly in which the subunit utilizes benzyl
alcohol groups in its supramolecular motif. Although the
assembly occurs in the absence of a single molecular template,
and the eight new covalent bonds created in the process are
formed in a non-correcting manner, each is formed with an
efficiency greater than 97%. As a result therefore, the synthesis
of the nanoscale host is highly efficient.

We recently demonstrated the stereoselective bridging of
resorcinarenes with benzal bromide, a process which provided
access to a new series of deep-cavity cavitands (DCCs)
epitomized by structure 1.15 More recently, we have noted that
this reaction can be applied to a range of benzal bromides to
form a series of DCCs whose ‘upper row’ of aromatic rings may
be substituted at the o, m or p position.16 We chose one example
of these, the p-Br derivative 2 as an entry point for the synthesis

of DCCs 3 and 4 whose architecture should allow them to
undergo an assembly process analogous to the carceplex
reaction.10,11 Our initial attempts to perform this ‘dimerization’
of DCCs centered around the tetrakis(4-hydroxyphenyl) deriva-
tive 3. However, our studies showed that 3 was insufficiently
stable in either acidic or basic conditions, a result we attribute to
the ability of the electrons on the OH groups to conjugate
through to the acetal bridges. Consequently, we synthesized
DCC 4 whose essential nucleophilic centers possess slightly
less preorganization, but are ‘insulated’ from the benzal
bridging-carbon by the benzyl methylene group.

Our initial studies focused on the covalent joining of two
molecules of 4 with the bis-electrophile CH2BrCl (Scheme 1) in
the absence of a large templating molecule. Our early results
with a range of aprotic solvents17 gave poor yields of 5, the bulk
of 4 being transformed into intractable polymeric material and
trace quantities of DCC–solvent conjugates. DMSO on the
other hand led to a considerable improvement, with a highly
efficient18 80% yield of 5 being obtained under dilute
conditions, a remarkable yield for an irreversible process.19

Yields decreased at concentrations > ca. 2 mmolar, presumably
because of the highly concentration-dependent formation of the
superbase, methylsulfinyl carbanion.20 However at these con-
centrations, yields could be increased by the addition of small
quantities of water to generate the less basic hydroxide21 and
inhibit20 the superbase formation.

Definitive formation of 5 came from an X-ray crystallo-
graphic determination (Fig. 1).22 In the solid state, both
hemispheres of 5 are rotated slightly with respect to each other,
while the linker groups each display the anomeric effect with
gauche–gauche conformations for the CH2OCH2OCH2 units. A
consideration of the salient inter-carbon atom distances in-
dicates that the cavity of 5 is approximately 19 3 15 Å, while
the portals are roughly 9.5 3 11.5 Å. Not surprisingly,
disordered solvent molecules within the cavity precluded an
accurate determination of its composition.

Although the assembly is highly efficient, DCC 4 is too large
to fit within the cavity of the product. Thus, there is no suitable,
single template to promote the formation of 5 over and above

† Synthetic and spectroscopic details for 3–6 and a full description of the
term ‘Assembly Number’ are available from the RSC web site, see http:/
/www.rsc.org/suppdata/cc/a9/a908144e/ Scheme 1
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random polymer. As it seems entropically unlikely that several
species in solution organize themselves into a multiple species
template; we surmise that this efficient assembly process is
occurring ‘around’ bulk solvent.

What lies behind this efficient assembly? In normal cav-
itands, the supramolecular motif that drives the reaction is
constructed with the phenol group, a moiety that in the presence
of base can form a charged hydrogen bond (CHB) with its
conjugate base.23 As yet, we have been unable to definitively
ascertain if an analogous process is occurring in the assembly of
4. However, variations in the base utilized for the reaction
tentatively support this hypothesis.24 Furthermore, work by
Kolthoff25—who demonstrated that weakly acid phenols
formed stronger CHBs with their conjugate bases than their
more acidic counterparts—suggests that the poorly acidic
benzyl alcohol group21a should form very strong CHBs.

In summary, we have demonstrated an efficient, irreversible
self-assembly that occurs in the absence of a single, molecular
template. Investigations into the use of the benzyl alcohol group
in other molecular subunits are currently underway.
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Fig. 1 ORTEP diagram of DCC dimer 5. Hydrogen atoms have been omitted
for clarity.
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